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ABSTRACT

This study explores the scaling properties of Reinforcement Learning from Hu-
man Feedback (RLHF) in Large Language Models (LLMs). Although RLHF is
considered an important step in post-training of LLMs, its scaling potential is still
largely unknown. We systematically analyze key components in the RLHF frame-
work—model size, data composition, and inference budget—and their impacts on
performance. Our findings show that increasing data diversity and volume improves
reward model performance, helping process-supervision models scale better. For
policy training, more response samples per prompt boost performance initially but
quickly plateau. And larger reward models offer modest gains in policy training. In
addition, larger policy models benefit less from RLHF with a fixed reward model.
Overall, RLHF scales less efficiently than pretraining, with diminishing returns
from additional computational resources. Based on these observations, we propose
strategies to optimize RLHF performance within computational limits.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing by learning ex-
tensive language patterns from vast datasets. A key step in these models is reinforcement learning
from human feedback (RLHF) (Ouyang et al., [2022)), which helps align the model’s behavior with
human intentions and enhances their performance across diverse tasks such as text generation Hu et al.
(2024), coding (Li et al.}, 2022} Zhu et al.,2024), and mathematical reasoning (Zhu et al.,[2024)) before
deployment. This approach has been successfully applied to leading models like ChatGPT (Achiam
et al.,[2023)), Llama (Touvron et al.,[2023;|Dubey et al.,|2024), and Claude (Bai et al.,|2022b), yielding
notable improvements. RLHF improves the model’s behavior by integrating external feedback, such
as human preferences and answer supervision, to enhance its generation. The process begins with
training a reward model using human-labeled preference data or reasoning data with correctness
labels, serving as a proxy for human supervision. Then, reinforcement learning is employed to
optimize the policy model through iterative feedback from the reward model.

The scaling properties of large language models, which lead to considerable performance improve-
ments with increased computational resources (i.e., more data and larger models), have been viewed
as key to the success of the current LLMs. However, the scaling properties of RLHF have been
less understood, while extensive studies have been conducted for both the pretraining stage (Kaplan
et al.,|2020; Hoffmann et al.,|2022; Du et al., |2024) and supervised fine-tuning (Yuan et al.,|2023]).
Recently, the emergence of OpenAl-ol (openai, 2024) has demonstrated the potential of scaling
reinforcement learning for reasoning tasks, but the specific methods used to achieve this result have
not been disclosed. Previous works (Ivison et al.l 2024; Xu et al.), including Llama2 (Touvron et al.,
2023)), have attempted to explore the greater potential of RLHF, i.e., PPO (Schulman et al.,[2017),
compared to DPO (Rafailov et al.l [2024b), and Llama3 (Dubey et al., [2024)) only describe its use
of DPO for optimization. They paid little attention to the scaling potential and properties of current
RLHF and there is still a limited practical understanding of large-scale RLHF training. This raises
questions about whether current RLHF techniques can lead to significant performance improvement
like OpenAl-ol, given access to more data and computing resources, or whether we have to develop
a more scalable reinforcement learning algorithm for LLMs.

In this work, we systematically investigate the key components of the current on-policy RLHF
framework that can be scaled in policy model and reward model training, including model size,
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Figure 1: Left: Performance trend with different reward models and sampled responses in RLHF
training using a fixed SFT model. Middle: Performance gain of different sizes of policy model after
RLHF. Right: Overview of reinforcement learning from human feedback (RLHF)

data composition, and the effect of inference budget. We explore how these components impact
the performance of each model individually and the final performance in on-policy RLHF methods,
specially PPO (Schulman et al.,[2017)) and GRPO (Shao et al.,2024). Since the performance of the
policy model is heavily influenced by the preceding pretraining and supervised fine-tuning (SFT)
stages, we aim to investigate two problems: (1) Given a fixed SFT model, how does scaling other
factors affect the policy model through RLHF? (2) With a fixed reward model and training strategy,
whether a larger policy model can benefit more from RLHF? Starting with an initial SFT model, we
train more than 20 models with reward and policy model sizes of 9B, 32B, and 200B parameters
across varying dataset sizes. We conduct a comprehensive study of different factors and show details
of the training process and evaluation results to help us understand what scales in RLHF training. In
particular, we pay more attention to reasoning tasks, which are considered more scalable in previous
works (openai, [2024; |Yuan et al., 2023) but also conduct experiments on general chat tasks.

Observations. Figure I highlights our key findings about the scaling property of RLHF on reasoning
tasks, and our important observations are summarized in the following:

1. Sampling more responses per prompt during PPO training generally improves policy model’s final
performance, but the benefits plateau quickly (Cf. Figure[Tal).

2. Larger reward models can effectively boost performance, but the improvement still significantly
falls behind the gains in Best-of-N evaluation of the reward model (Cf. Figure [3).

Larger policy models benefit less from RLHF when using a fixed size reward model (Cf. Figure[Ib).

4. Performance improves remarkably in the early stage of policy training, but additional data yields
only marginal gains despite increasing training rewards (Cf. Figure[5).

5. Increasing training data for reward model improves its performance in Best-of-/V evaluation, with
increasing prompt diversity being more effective than increasing response diversity (Cf. Figure [6).

6. Process supervision from automated labeling yields better performance than outcome supervision

on the targeted task, but struggles to generalize to other tasks (Cf. Figure|[6).

»

Overall, our empirical observations suggest that the current RLHF framework does not scale as
effectively as the pretraining stage. Increased computational resources do not consistently yield
significant and observable performance improvements. This limitation may stem from inaccuracies
in the learned reward model or current policy optimization strategies. Further research is deserved to
unlock the full potential of reinforcement learning for post-training of LLMs.

Nonetheless, our empirical study still suggests some recipes for maximizing the benefits from
increased compute within the current RLHF framework. Starting from the baseline of sampling
one response per prompt, the following strategies can be considered in the order for optimizing
performance as compute expands:

* Sampling more responses per prompt during policy training, around 4 or 8 for efficiency, is
cost-effective for most tasks. Expanding the reward model size is cost-effective, too.

* Collect as many and diverse as possible training data for reward model training, yet moderate size
and high-quality prompts for policy model training.

* Process supervision should be derived for all targeted tasks rather than only part of them.
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2 RELATED WORK

Reinforcement learning from human feedback for language models. The primary motivation
behind reinforcement learning from human feedback (RLHF) is to align language models with human
intentions and preferences (Stiennon et al., 2020; (Ouyang et al., [2022; |Lee et al.l 2023)). Subsequent
studies (Shao et al., 2024} Zhu et al., 2024) also demonstrate the effectiveness of RLHF in boosting
LLMs’ reasoning abilities. The general pipeline of RLHF first trains a reward model to capture human
preferences, and then optimizes the policy model against it using reinforcement learning algorithms
such as PPO (Schulman et al., 2017} and its variants (Ahmadian et al.,|2024;|Shao et al., [2024; L1 et al.|
2023)). Despite its success in leading models like ChatGPT and Claude (Bai et al., [2022a}b)), offline
methods (Rafailov et al.,[2024bj [Ethayarajh et al.l 2024; [Ji et al.|,[2024) has become widely popular in
open-source community due to its simplicity and stability, whereas PPO is resource-intensive and
harder to train. Recently, increasing efforts have been made to reveal the secrets in online RLHF
training and achieved encouraging performance across various tasks (Ivison et al., [2024} Xu et al.}
Shao et al., 2024} [Touvron et al., 2023). In particular, Ivison et al.[(2024) investigates strategies for
improved PPO across different aspects and demonstrates significant advantages of PPO over DPO.
In this work, we focus specifically on the scaling properties of RLHF and investigate the extent to
which its performance can benefit from increased compute.

Scaling properties of language models. Scaling is one of the key factors leading to the success
of powerful language models and provides crucial insights into continuous improvement of LLMs’
performance. [Kaplan et al.| (2020); Hoffmann et al.| (2022) study the scaling laws for pretraining and
demonstrate that scaling model size and training tokens can both lead to predictable improvements.
Du et al.| (2024)) further build the connection between pretraining loss and downstream performance
and claim that pretraining loss, rather than model size, is the key to predicting emergent abilities.
In the context of reinforcement learning for LLMs, |Gao et al.| (2023)); |Cobbe et al.| (2021) explore
the scaling laws in reward modeling under a synthetic setting and show that over-optimizing proxy
reward models can degrade true performance in RLHF. The same problem is also observed in direct
policy optimization when scaling the training (Rafailov et al.|[2024a)). Recently, OpenAl-ol (openai,
2024) has revealed the potential for scaling reinforcement learning at both training and inference
time and significantly boosts the reasoning abilities of LLMs. This development emphasizes the
importance of scaling reinforcement learning techniques and raises questions about whether the
existing RLHF paradigm can achieve comparable scaling performance.

3 STUDY SETUP

We first describe the key components in reinforcement learning from human feedback (RLHF) before
moving into our extensive empirical study. We follow the general RLHF framework, as shown in
Figure[I[c), which first trains a reward model and then uses the model to guide policy training using
reinforcement learning. But our implementation has several important differences. First, we train a
unified model for both human preference and reasoning tasks using a multi-task objective instead
of training multiple separate reward models. Second, during policy training, we sample multiple
responses for each prompt and apply additional reward clipping and normalization, which lead to
more stable policy training.

3.1 REWARD MODEL TRAINING

The reward model is usually trained on a preference dataset D p, in which each prompt z is associated
with two responses, y. and y,-, along with a preference order (denoted as y. > vy,-, suggesting ¥.. is
preferred). These responses are sampled from an existing LLM and the preference generally comes
from human annotation or online feedback. The reward model R (x,y) is a scalar function and
consists of a transformer backbone with a regression head replacing the traditional language modeling
head. Training the reward model involves minimizing the following loss function:

'CPT'ef = _]E(w,yc,yr»)~DP [loga (Rw(ﬂf,yc) - Rw(x’yr))] . (1)

For reasoning tasks, which generally have a definitive correct answer Z(y) € {0, 1}, such as math
and programming, it is more effective to approach them as binary classification problems rather than
pairwise ranking tasks, as shown in previous studies (Uesato et al., 2022} [Lightman et al., 2023; |Shao
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et al., [2024). Consequently, in this work, we adopt a multi-task learning approach to train our reward
model. For preference data, we optimize the model using Eq (), while for binary-labeled data, we
employ cross-entropy loss for optimization:

Lr) = ~E(ey, y)~Dg Y1 ¥ 10g Ry (7, y,) + (1 — y1) *log(1 — Ry(2,yr))] + Lprer  (2)

where y; € {0, 1} indicates the correctness of the response. We adopt a similar approach to train the
process reward model (PRM) with the following differences. First, we retain outcome supervision for
human preference data while introducing process supervision signals only for reasoning-related tasks.
Second, the cross-entropy loss is applied to all intermediate steps in addition to the final step. In this
work, to produce process supervision, we follow the approach in (Wang et al.l 2024; |Luo et al.,|2024)
to annotate the intermediate steps automatically with additional inference rollouts.

Research question: Regarding the reward model, we aim to investigate the effects of model size
and data scaling, which includes both the scale and diversity of the reward model training data, as
well as process supervision. Since previous work (Snell et al.| 2024) observe that using the PRM’s
prediction at the last step shows the best performance in Best-of-N evaluation, it can be considered
as a specialized reward model scaling (e.g., in data annotation) that incurs higher inference cost.

3.2 PoLICY MODEL TRAINING

The objective of policy training is to maximize the reward collected by its generated responses. The
training process involves four models: a reward model that provides feedback, a policy model for
optimization, a reference model for regularization, and an optional critic model for stabilizing policy
training. For each prompt, rather than using pre-generated responses, a response ¥ is sampled from
the latest policy model y ~ 7y(y|x). This response is scored by the reward model, producing a
response-level reward r = r(z,y). In general, a more precise reward can lead to improved policy
training. In our practice, multiple responses y = {y1, ..., yn } are sampled for a prompt 2 to improve
the utilization of prompt data, and all of them are used for policy training. We also perform reward

normalization: given the raw reward o = {r;}Y, for all responses in y, the final reward for policy
r;—mean(rp) \ N

optimization is obtained via r = { wd(ro) Ji=1-

Generally, the policy training maintains a KL divergence penalty to prevent the model from moving
too far away from the SFT model causing degeneration:

II;_E;X EZ'N'DW,Z]NTK'Q(Z}‘H’:) [Tw (:Cv y)} - ﬁDKL(WﬁH’frref) (3)

where s refers the SFT policy that usually initializes policy training. Since directly optimizing
Eq (3) can be unstable, policy training is often realized via PPO (Schulman et al.,[2017) and its
variants (Shao et al.|,[2024) using a clipped version of policy gradient for more conservative and stable
learning. In general, these policy-gradient based methods for RLHF training can be written in the
following general format:

7(6) = o) 4 i (W,At,l _ e,l—!—e))} )

E [min (
q~P(Q),0~mo,, (Olq) 014 (0|Q) 0014 (Olq

where 0,4 is the policy during the policy gradient steps from which the evaluated responses are
sampled. A, is the advantage. A, is obtained through the combination of the reward r, (x, y) and
a estimated value V(«x,y) in PPO, and A, equals to r; for Group Relative Policy Optimization
(GRPO) (Shao et al.,[2024) or REINFORCE.

Asymmetric reward shrinking. In our experiments, we found that policy-gradient methods without
a critic model are less stable compared to PPO. Inspired by the issue of negative gradients in direct
policy optimization (Rafailov et al.,|2024b), which can result in unpredictable behavior and abnormal
outputs, we apply an asymmetric shrinking technique that maps the reward in an asymmetric way:

a-r; ifr; <O,
Ty = .
T otherwise.

where « is a constant and o < 1. In our experiments, this technique contributes to more stable
training and leads to a steady increase in training rewards.
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Research question: We first examine whether larger policy models can benefit more from RLHF
given a fixed reward model and training strategy. Then from the aforementioned procedures about
policy training, we examine what factors can benefit RLHF when scaled up: i.e., whether one should
introduce more responses per prompt or more prompts, whether a larger reward model would be
beneficial, and whether different reinforcement learning algorithms matter. Given a fixed size policy
model, we examine how these factors affect the final performance of the trained policy with increased
computing resources.

4 EXPERIMENT
4.1 EXPERIMENT SETUP

Data construction. We collect diverse datasets to train both the reward and policy models. These
datasets include general open-chat, math, code, and instruction-following tasks. Specifically, the
collection comprises MATH (Hendrycks et al.;, 2021), Numina-Math (Jia LI & Polu, [2024), a Chinese
K-12 dataset, ShareGPT, code contest data, and additional self-collected open-domain chat data. The
response data for reward model training is sampled from a series of GLM models (GLM et al.| 2024),
including GLM4-9B-chat and larger models. The dataset distribution is approximately 40%, 30%,
and 30% for general open-chat, math, and code, respectively.

Training settings. We mainly experiment with GLM4-9B (GLM et al.,|[2024), a widely-used open-
source LLM in many recent studies. We first train an SFT model based on GLM4-9B, which is
then used for reward and policy training. All models are trained with OpenRLHF (Hu et al., 2024)
framework. For policy training, we use a constant learning rate, generate rollouts of 1024 x M
prompts, and take a gradient step per 128 x M samples, where M represents the number of sampled
responses per prompt during training. Outcome reward models are used for all experiments. To
examine the effect of model size, we also conduct experiments with larger models with around 32B
and 200B parameters. Unless specified, models in policy training are based on GLM4-9B-SFT.

Evaluation. We conduct evaluations on diverse benchmarks, including reasoning, e.g.,
MATH (Hendrycks et al.l[2021) and GPQA (Rein et al., 2023)), and LiveCodeBench (Jain et al.| 2024)),
general tasks, e.g., MMLU (Hendrycks et al.l [2020), and alignment, e.g., AlignBench (Liu et al.,
2023). We evaluate on a subset of AlignBench which excludes data from mathematical reasoning
and Chinese reasoning categories to focus specially on the general preference alignment evaluation.
For reward model evaluation, we follow the Best-of-N strategy and sample IV responses from the
policy model for each prompt. These responses with the prompt are then fed into the reward model
and the response of the highest-score is selected as the final output for evaluation. For policy model
evaluation, we report the performance with responses generated by greedy decoding.

4.2 SCALING OF PoLICY MODEL TRAINING

4.2.1 EFFECTS OF RESPONSE SAMPLING

Setting. To investigate the impact of response sampling during policy training, we conduct experi-
ments using PPO, and sample 1/2/4/8/16 responses for each prompt respectively. As stated in Section
the batch size is proportional to the number of sampled responses to maintain consistent gradient
update steps across different training experiments.

Results. The evaluation results are reported in Figure 2} Generally, increasing the number of samples
leads to better performance across most tasks. This suggests that more sampled responses allow the
policy to make better-informed improvements by learning from a wider variety of reward feedback.
But the impact of increased sampling is not uniform across tasks. For example, the MMLU task shows
an inconsistent trend, especially under the larger reward model; and in AlignBench, the performance
even significantly dropped with 16 responses. This implies that the benefits of increased response
sampling can be task-specific. The most substantial improvements often occur with moderately
increased samples (from 1 to 4). However, the rate of improvement tends to slow down with more
samples (8 to 16), suggesting potential diminishing returns. This is particularly noticeable in the
MATH and LiveCodeBench tasks.
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Figure 2: Results of policy model after PPO training. We report the performance using different
reward model sizes and different numbers of responses sampled per prompt during training.

To investigate the relation between sampling multiple responses in policy training and Best-of-N
evaluation of reward models, we report the comparison results in Figure [3] which is constructed from
the average performance of four reasoning-related datasets, i.e., MATH, GPQA, LiveCodeBench,
and GSMSK. Significant performance improvement in Best-of-IV
results indicate that increased response sampling tends to yield

54| ——- BoN-9B o

more high-quality responses and the reward model can effectively - BoN-328 o
we=_PPO-RM-9B R
52| mmmm PPO-RM-32B ,/’

identify them, thus leading to performance improvement in policy
training. However, the gain in policy training lags considerably be-
hind the improvements in Best-of-/V evaluation of reward models,
indicating that there is still room for further optimizing in policy.

Average Accuracy

We also investigate the factors in driving the policy update during
the training process. Figure [ (a) illustrates that more sampled
responses lead to a faster reward increase during policy training, 2 um Zrlesponszés per ;iompt 2
which could be attributed to a larger batch size or more accurate -

aggregated reward estimation. Figure 3: Results of Best-of-IN
(reward model) and PPO train-
ing (IV responses), with average
performance of MATH, GPQA,
LiveCodeBench, and GSM8K

Overall, increasing the number of sampled responses generally
boosts policy model performance in most tasks and shows observ-
able scaling trends in reasoning-related tasks. The most notable
improvement occurs when increasing the sample size from 1 to 4,
with relatively smaller returns as more samples are added.

4.2.2 EFFECTS OF REWARD MODEL SIZE

Setup. We conduct experiments on PPO with reward models of 9B and 32B parameters. The two
reward models are trained with the same data except for minimal hyper-parameter adjustments.

Results. Figure|l|(a) shows that larger reward models can consistently bring improved performance
in reasoning-related tasks when sampling more than 2 responses during training. From Figure[2] it
is observed that the 32B reward model consistently outperforms the 9B reward model in reasoning-
related tasks like MATH, GPQA, GSMSK, and LiveCodeBench.

However, the performance gain is not uniform across all tasks. For MMLU, whose performance
highly relies on the policy model’s pretraining stage, training with a large reward model starts stronger
but pays more alignment tax with increased samples. And for AlignBench, training with the smaller
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Table 1: Comparison of PPO and GRPO policy training methods.

MATH GPQA LiveCodeBench GSMS8K MMLU Average

SFT Reward 48.2 27.8 21.0 85.3 714 50.7
N_SAMPLE=4

PPO 9B 514 30.1 24 85.0 71.0 523
GPRO 9B 51.5 31.1 21.0 86.1 70.3 52.0
PPO 32B 53.5 32.6 243 86.5 70.4 53.5
GRPO 32B 52.8 323 243 86.9 72.0 53.6
N_SAMPLE=16

PPO 9B 52.8 31.5 243 85.5 71.1 53.0
GRPO 9B 52.6 31.7 22.8 86.1 72.2 53.1
PPO 32B 533 33.0 25.0 87.2 69.4 53.6
GRPO 32B 52.7 339 24.5 87.0 71.4 53.9
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Figure 4: The training process of PPO and its variant GRPO. (a): Training rewards of PPO with
different numbers of responses sampled per prompt. (b): The training reward comparison between
PPO and GRPO. (c): KL-reward relation. (d): Response length change during training.

reward model even shows a clear advantage. The reason may be that the quality of learning human
preferences is not scalable and a larger reward model tends to overfit the noise in the training data.

To summarize, larger reward models generally lead to better performance of the policy model in
reasoning-related tasks, but the benefits are uncertain for other tasks

4.2.3 EFFECTS OF MORE TRAINING DATA

Setup. We collect more than 200k policy model training prompts and conduct experiments with a
constant learning rate. The goal is to monitor the performance of policy model during training and
examine whether the policy model can benefit from more training data.

Results. The training progress is shown in Figure 4] and the corresponding intermediate downstream
evaluation performance can be found in Figure[5] The reward steadily increases as training progresses,
indicating that PPO can effectively optimize toward the predefined target and maximize the reward.
However, the downstream evaluation results behave differently. For most reasoning tasks, such
as MATH and LiveCodeBench, performance shows rapid improvement in the early stages, but
quickly plateaus, with only marginal gains in the later phase of training. Unlike the scaling trends
in pretraining and supervised fine-tuning, current RLHF solution cannot benefit from more training
data, and thus scaling the prompts does not lead to significant performance improvement.

Overall, we conclude that the performance evaluated by reward model during policy training is not
strongly correlated with the policy model’s downstream task performance. Higher rewards do not
necessarily translate to better downstream performance. And the main improvement of the policy
model in downstream tasks happens in the early stage of policy training.

4.2.4 SCALING OF POLICY MODEL SIZE

Setup. We investigate the performance gain of different sizes of policy models after RLHF with a
fixed reward model and training strategy. The experiments include policy models ranging from 9B to
200B parameters, alongside reward models of 32B and 200B.
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Figure 5: Downstream evaluation performance during PPO training. We report the average per-
formance of multiple runs, e.g., different reward model sizes, and sampling strategies, on four
benchmarks to explore the general trends.

Results. Figure [T[b) shows the average performance gain on reasoning tasks, i.e., MATH, Live-
CodeBench, and GPQA. It is observed that for different reward models, the performance improvement
of the policy model diminishes as its size increases. For example, when using a 32B reward model,
the average performance gain consistently decreases from 4.4% to 1.9% as the policy model size
grows from 9B to 200B. The results indicates that in current RLHF, larger policy models would
benefit less from RLHF training, which is even inverse scaling.

4.2.5 TRAINING ALGORITHM: PPO v.s. GRPO

Setup. We also compare the two policy training algorithms—PPO and GRPO, and investigate their
difference in the training behavior and final results. We apply the asymmetric reward shrinking
proposed in Section [3|to stabilize the training of GRPO.

Results. The overall performance of policy models is shown in Table [II We observe minimal
differences between the two methods and their performance is largely similar even across different
reward models and sampling strategies. One noticeable difference is that GRPO generally better
maintains the performance in MMLU, yet PPO might cause a performance drop compared to the SFT
baseline. Figures [db| [dc| and[Ad|report the reward, KL divergence, and response length during the
training process. Both algorithms demonstrate an increase in reward, and PPO exhibits better stability
through a steadier reward increase. GRPO tends to significantly increase the divergence between the
policy and the SFT model and also leads to a marked higher increase in response length.

Overall, while the two methods exhibit different training behavior, they achieve comparable perfor-
mance in policy model evaluation and exhibit similar scaling trends.

4.3 REWARD MODEL

4.3.1 DATA DIVERSITY AND SCALE

Setup. We examine the impact of data scale and prompt diversity on reward model learning. We set
up experiments on the math task and use the same training set in (Lightman et al.), which includes
11k questions. To vary the scale of data, we utilize all 11k questions and sample 5, 10, 20, and 40
solutions per question. To assess data diversity, we fix the number of solutions at 40 per question and
progressively increase the number of questions, starting from 1/8 of the total setup to the full dataset.

Results. The results are listed in Figure [6] (left) presenting the Best-of-4 and Best-of-64 performance
of GLM4-9B-chat on the MATH-500 dataset. Generally, increasing training prompts or solutions
both benefit the performance in Best-of- /N evaluation. Specifically, experiments with higher prompt
diversity consistently outperform those with more solutions per prompt for a given size of training set
(shown in the shadow region), and the gap is more significant with more responses in the evaluation.
Furthermore, the performance improvement appears nearly linear as prompt diversity increases with
a fixed number of solutions per prompt. It suggests a robust and scalable benefit to expanding the
set of training prompts. Therefore, to boost the performance of the reward model, the top priority
is to collect diverse prompts, and then sample multiple responses, especially when resources are
constrained.

Overall, reward model training shows promising data scaling trends. Increasing prompt diversity
proves more effective than generating multiple responses per prompt.
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Figure 6: Left: Performance of reward models on MATH-500 with varying training data sizes. Right:
Results of Best-of-64 performance with different outcome and process supervision models.

4.3.2 PROCESS REWARD V.S. OUTCOME REWARD

Setup. We evaluate the performance of process reward model (PRM) compared to outcome reward
model (ORM). In PRM training, only the intermediate steps in the solutions to math-related problems
are considered, as these steps can be automatically annotated by assessing the success rate of obtaining
a correct answer by rolling out from each intermediate step, following in (Wang et al.,|2024). For
other tasks like code and human preference, only the final label is used. As a result, the trained PRM
is an ORM for general tasks but is specifically tailored for math-related reasoning tasks as PRM.

Results. The results are illustrated in Figure[6] (right). PRM exhibits distinct behavior for different
datasets. For MATH-500, PRM consistently outperforms ORM in Best-of-64 evaluations across dif-
ferent reward model scales. However, the advantage is not consistent for GPQA and LiveCodeBench,
whose process supervision is not covered in the training data. PRM-9B performs better than ORM
in LiveCodeBench but worse in GPQA, while PRM-32B shows the opposite trend. This suggests
that PRM struggles to generalize to tasks outside its training data, such as GPQA. And expanding
training data to cover non-math tasks could further improve PRM’s performance. Considering the
generalization problem, we only use ORM in previous policy training experiments.

Overall, PRM can be highly effective for the targeted task, but it struggles to effectively generalize to
other tasks not included in the training set.

4.4 DISCUSSION AND LIMITATIONS

Based on the analysis above, we can summarize the factors that contribute to performance improve-
ment with increased compute during RLHF training. These include: more sampled responses, a
larger reward model for policy model training, more diverse prompts, and process supervision for
reward model training. Note that we did not directly perform policy training under PRM due to the
aforementioned generalization problem, and we have not found an effective strategy for generating
process supervision across different tasks yet. However, RLHF training does not scale efficiently as
pretraining, with improvements tending to saturate and provide only marginal gains beyond a certain
point. A more concerning problem is that larger policy models benefit less from RLHF. The problem
preventing RLHF scaling may be attributed to inaccuracies in reward modeling, which may lead
to substantial noise in policy training. As a result, current RLHF methods do not scale and could
not consistently benefit from increased compute during training. It is thus crucial to explore more
scalable training methods for reinforcement learning of LLMs.

5 CONCLUSION

This study examined the scaling properties of reinforcement learning from human feedback (RLHF) in
LLMs. We conducted extensive experiments to analyze the key components—model sizes, data, and
algorithms. Our findings show that RLHF does not scale as effectively as pretraining or supervised
fine-tuning in LLMs. Larger policy models benefit less from RLHF and gains from additional data
and compute quickly become limited. Despite these limitations, we also find practical and beneficial
strategies. Future work should focus on developing more scalable RLHF techniques to fully unleash
its potential in boosting LLM performance.
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A APPENDIX

A.1 BEST-OF-N RESULTS

We compare the best-of-/N performance of the outcome reward model (ORM) and process reward
model (PRM) across different sizes. For each test sample, we initially sample IV responses from
the policy model with a temperature set to 0.9. Subsequently, the reward model predicts a score
for each response. The response with the highest score, as determined by the reward model, is
considered the outcome of the reward model. The quality of this response is referred to as the
best-of-N score. The evaluation encompasses the domains of math, i.e., MATH-500 and GSMS8K,
coding, i.e., LiveCodeBench, and reasoning, i.e., GPQA.

To assess the generalization capability of the two reward models, we evaluate their performance
not only on GLM4-9B-chat (GLM et al., 2024) but also on LLAMA3-8B-Instruct (Dubey et al.,
2024). Output distribution shift is common in policy model training due to the increasing divergence
between the latest policy model and the SFT model as training progresses. Given that the reward

model is trained on the SFT data distribution, it is necessary to test its ability to generalize to shifted
distributions.
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Figure 7: Best-of-N performance of ORM and PRM with different policy models on MATH-500.
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Figure 8: Best-of-N performance of ORM and PRM with different policy models on GSM8K.

The evaluation results are shown in Figure [7] for MATH-500, Figure [9] for GPQA, Figure [10] for
LiveCodeBench, and Figure [8]for GSM8K. As expected, the best-of-N performance of ORM and
PRM improves with the increase in model size and PRM consistently outperforms ORM in MATH.
And in most cases, increasing the sampled responses leads to better performance, except for part
results on GPQA and LiveCodeBench. This may indicate that the reward model is disturbed by
uncertain noise and thus the decrease exists.
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Figure 9: Best-of-N performance of ORM and PRM with different policy models on GPQA.
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Performance of GLM4-9B-Chat on LiveCodeBench Performance of LLAMA3-8B-Instruct on LiveCodeBench
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Figure 10: Best-of-N performance of ORM and PRM with different policy models on LiveCodeBench.

Comparing the results on GLM4-9B-chat and Llama3-8B-Instruct, we find that in math-related tasks,
i.e., MATH=500 and GSM8K, PRM generally performs better than ORM in Llama3-8B-Instruct
and thus shows better generalization ability. However, for GPQA, the PRM-9B almost leads to
degenerated performance and is rather not robust. But PRM-32B shows comparable results. The
observation is consistent across the two models. Therefore, we have to collect targeted process
supervision data to train an effective PRM model.
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